Physical limitations on Salmonella typhi entry into cultured human intestinal epithelial cells.

نویسندگان

  • X Z Huang
  • B Tall
  • W R Schwan
  • D J Kopecko
چکیده

Kinetic studies of Salmonella typhi invasion of INT407 cells at different multiplicities of infection (MOIs) have revealed a strict physical limitation on S. typhi entry at MOIs of >/=40. Staining of infected monolayers to distinguish intracellular from extracellular bacteria revealed that all monolayer cells are susceptible to infection and that internalized bacteria are typically contained in one to three separate clusters per cell during the first 60 min. Scanning and transmission electron microscopic analyses of time course-infected monolayers showed that at early times postinfection, bacteria bind to shortened, coalesced microvilli in one to three focal aggregate structures per host cell surface. As reported previously for S. typhimurium, focal aggregates progress to conical membrane ruffles that appear to engulf one or a few centrally contained S. typhi cells by a macropinocytic process, which enhanced the entry of simultaneously added Escherichia coli HB101 about 30-fold. Additionally, kinetic studies showed that at an MOI of approximately 400, maximal S. typhi entry is virtually completed within 30 to 35 min. Monolayers pretreated with S. typhi for 30 min to saturate the entry process were severely reduced in the ability to internalize subsequently added kanamycin-resistant strains of S. typhi or S. typhimurium, but E. coli HB101(pRI203) expressing the cloned Yersinia inv gene was not reduced in entry. In invasion inhibition assays, anti-beta1 integrin antibodies markedly reduced E. coli HB101(pRI203) invasion efficiency but did not reduce S. typhi entry. Collectively, these data provide direct physical and visual evidence which indicates that S. typhi organisms are internalized at a limited number (i.e., two to four) of sites on host cells. S. typhi and S. typhimurium likely share INT407 cell entry receptors which do not appear to be members of the beta1 integrin superfamily.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The outer core lipopolysaccharide of Salmonella enterica serovar Typhi is required for bacterial entry into epithelial cells.

Salmonella enterica serovar Typhi causes typhoid fever in humans. Central to the pathogenicity of serovar Typhi is its capacity to invade intestinal epithelial cells. The role of lipopolysaccharide (LPS) in the invasion process of serovar Typhi is unclear. In this work, we constructed a series of mutants with defined deletions in genes for the synthesis and polymerization of the O antigen (wbaP...

متن کامل

Invasion of cultured human epithelial cells by Klebsiella pneumoniae isolated from the urinary tract.

The mechanisms which enable entry into cultured human epithelial cells by Klebsiella pneumoniae were compared with those of Salmonella typhi Ty2. K. pneumoniae 3091, isolated from a urine sample of a patient with a urinary tract infection, invaded human epithelial cells from the bladder and ileocecum and persisted for days in vitro. Electron microscopic studies demonstrated that K. pneumoniae w...

متن کامل

Penetration of human intestinal epithelial cells by Salmonella: molecular cloning and expression of Salmonella typhi invasion determinants in Escherichia coli.

Salmonella typhi, the causative agent of typhoid fever, must invade the human gastrointestinal tract and multiply within the host to cause disease. We have cloned from S. typhi Ty2 a chromosomal region that confers upon Escherichia coli HB101 the ability to invade cultured human intestinal epithelial cells. Three invasion-positive recombinant cosmids were isolated and restriction endonuclease a...

متن کامل

Salmonella enterica serovar typhi uses type IVB pili to enter human intestinal epithelial cells.

DNA sequencing upstream of the Salmonella enterica serovar Typhi pilV and rci genes previously identified in the ca. 118-kb major pathogenicity island (X.-L. Zhang, C. Morris, and J. Hackett, Gene 202:139-146, 1997) identified a further 10 pil genes apparently forming a pil operon. The product of the pilS gene, prePilS protein (a putative type IVB structural prepilin) was purified, and an anti-...

متن کامل

Immunoprotectivity of Salmonella enterica serovar Enteritidis virulence protein, InvH, against Salmonella typhi

Objective(s):Typhoid fever is a dreadful disease of a major threat to public health in developing countries. Vaccination with bacterial immunodominant components such as surface proteins may prove as a potent alternative to live attenuated vaccines. InvH, an important part of needle complex in type three secretion system (TTSS) plays important role in efficient bacterial adherence and entry int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 66 6  شماره 

صفحات  -

تاریخ انتشار 1998